THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH3070 (Second Term, 2014–2015) Introduction to Topology Exercise 7 Product and Quotient

Remarks

Many of these exercises are adopted from the textbooks (Davis or Munkres). You are suggested to work more from the textbooks or other relevant books.

- 1. Show that the relative topology (induced topology) is "transitive" in some sense. That is for $A \subset B \subset (X, \mathcal{T})$, the topology of A induced indirectly from B is the same as the one directly induced from X.
- 2. Let $A \subset (X, \mathcal{T})$ be given the induced topology $\mathcal{T}|_A$ and $B \subset A$. Guess and prove the relation between $\operatorname{Int}_A(B)$ and $\operatorname{Int}_X(B)$ which are the interior wrt to $\mathcal{T}|_A$ and \mathcal{T} . Do the similar thing for closures.
- 3. Let $A \subset (X, \mathcal{T})$ be given a topology \mathcal{T}_A . Formulate a condition for \mathcal{T}_A being the induced topology in terms of the inclusion mapping $\iota \colon A \hookrightarrow X$.
- 4. Let $Y \subset (X, \mathcal{T})$ be a closed set which is given the induced topology. If $A \subset Y$ is closed in $(Y, \mathcal{T}|_Y)$, show that A is also closed in (X, \mathcal{T}) .
- 5. Let $X \times X$ be given the product topology of (X, \mathcal{T}) . Show that $D = \{(x, x) : x \in X\}$ as a subspace of $X \times X$ is homeomorphic to X.
- 6. Let Y be a subspace of (X, \mathcal{T}) , i.e., with the induced topology and $f: X \to Z$ be continuous. Is the restriction $f|_Y: Y \to Z$ continuous?
- 7. Show that $(X \times Y) \times Z$ is homeomorphic to $X \times (Y \times Z)$ wrt product topologies.
- 8. Let $X_1 \times X_2$ be given the product topology. Show that the mappings $\pi_j: X_1 \times X_2 \to X_j$, j = 1, 2, are open and continuous.

Moreover, let \mathcal{T}^* be a topology on $X_1 \times X_2$ such that both mappings

$$\pi_j: (X_1 \times X_2, \mathcal{T}^*) \rightarrow (X_j, \mathcal{T}_j), \quad j = 1, 2,$$

are continuous. What is the relation between \mathcal{T}^* and the product topology?

9. Given any topological space Y and product space $X_1 \times X_2$, a mapping $f: Y \to X_1 \times X_2$ is continuous if and only if $\pi_j \circ f$, j = 1, 2, are continuous.

If \mathcal{T}^* is a topology on $X_1 \times X_2$ with the same property, then \mathcal{T}^* is the product topology.

- 10. Let $X = \{ (x,0) : x \in \mathbb{R} \} \cup \{ (x,1) : x \in \mathbb{R} \} \subset \mathbb{R}^2$, i.e., $X = \mathbb{R} \coprod \mathbb{R}$. Define an equivalence relation on X by identifying (0,0) and (0,1). Rigorously, this means $(s_1,t_1) \sim (s_2,t_2)$ iff $(s_1,t_1) = (s_2,t_2)$ or $(s_1,t_1) = (0,0)$ while $(s_2,t_2) = (0,1)$ or vice versa. Show that X/\sim is homeomorphic to the two axes in \mathbb{R}^2 .
- 11. Let $X = \{ (s,t) \in \mathbb{R}^2 : 0 \neq t \in \mathbb{Z} \}$ and $Y = \{ (s,t) \in \mathbb{R}^2 : 1/t \in \mathbb{Z} \}$ be given the standard induced topology. Define an equivalence relation on both X and Y by $(s_1, t_1) \sim (s_2, t_2)$ iff $(s_1, t_1) = (s_2, t_2)$ or $s_1 = s_2 = 0$. That is points on the y-axis are identified to one point. Is it true that X/\sim and Y/\sim are homeomorphic?
- 12. Define an equivalence relation on \mathbb{R} by identifying n with 1/n for all $n \in \mathbb{Z}$.
 - (a) Sketch a picture to represent the space \mathbb{R}/\sim .
 - (b) Find a sequence $x_n \in \mathbb{R}$ such that $[x_n] \in \mathbb{R}/\sim$ converges but x_n does not.
 - (c) Can a sequence $x_n \in \mathbb{R}$ converge but $[x_n] \in \mathbb{R}/\sim$ does not?
- 13. Let X/\sim be a quotient space obtained from X and $Y \subset X$.
 - (a) Show that there is a natural way to induce an equivalence relation on Y; and thus a quotient space Y/\sim .
 - (b) Let $Y^* = \{ [x] \in (X/\sim) : [x] \cap Y \neq \emptyset \}$ be given the topology induced from X/\sim . Is Y^* homeomorphic to Y/\sim ?
- 14. Let $X = \mathbb{R}/\sim$ where $s \sim t$ if $s, t \in \mathbb{Z}$ and $Y = \bigcup_{n=1}^{\infty} \left\{ z \in \mathbb{C} : \left| z \frac{1}{n} \right| = \frac{1}{n} \right\}$ with induced topology of $\mathbb{C} = \mathbb{R}^2$. Is X homeomorphic to Y?
- 15. Let $A \subset X$. What can you say about $Int(A)/\sim$ and $Int(A/\sim)$; $Cl(A)/\sim$ and $Cl(A/\sim)$?
- 16. Let \mathcal{T}_q be the quotient topology on X/\sim and \mathcal{T}' be any topology. Show that if the quotient map $q: (X, \mathcal{T}) \rightarrow (X/\sim, \mathcal{T}')$ is continuous, then $\mathcal{T}' \subset \mathcal{T}_q$.
- 17. Let Z be any topological space. A mapping f: (X/~, T_q) → Z is continuous if and only if f ∘ q: (X, T) → Z is continuous.
 If T' is a topology on X/~ satisfying the same property, then T' = T_q.
- 18. Let $(X_n, d_n), n \in \mathbb{N}$, be a countable family of metric spaces; $X = \prod_{n=1}^{\infty} X_n$ be the product space of the metric topologies induced by d_n . Define a metric d on X in this way, for

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}.$$

Show that d is a metric on X and the topology it induces is exactly the product topology.

 $x = (x_n), y = (y_n) \in X,$